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Let G be a Brauer graph and A the associated Brauer graph algebra. Denote by 
gr(A) the graded algebra associated with the radical filtration of A. The question 
when gr(A) is of finite representation type was answered in a previous paper. In the 
present paper, we characterize when gr(A) is domestic in terms of the associated 
Brauer graph G.
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1. Introduction

This is a continuation of our study on the associated graded algebras of Brauer graph algebras in [10]. 
Since last paper has determined the finite representation type of this class of algebras, we focus in the 
present paper on the infinite representation type of them. In particular, we will characterize the domestic 
associated graded algebras of Brauer graph algebras.

Brauer graph algebras are finite dimensional algebras and originate in the modular representation theory 
of finite groups. They are defined by combinatorial data based on graphs: underlying every Brauer graph 
algebra is a finite graph with a cyclic orientation of the edges at every vertex and a multiplicity function. 
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At least over an algebraically closed field, the class of Brauer graph algebras coincides with the class of 
symmetric special biserial algebras. For the representation theory of Brauer graph algebras, we refer the 
reader to the survey article [12].

The idea of associating a finite dimensional algebra A to a graded algebra (denoted by gr(A)) with the 
radical filtration of A is not rare in representation theory (see for example, [3,11]). For a finite dimensional 
algebra A defined by quiver with relations, gr(A) often appears as a degeneration of A. The notion of degen
eration comes from the geometric representation theory of algebras. It is known that if Λ0 is a degeneration 
of some algebra Λ1 and Λ0 is representationfinite (resp. tame), then Λ1 is also representationfinite (resp. 
tame) (see [7,8]). However, the representation type of Λ0 is usually more complicated than that of Λ1. In 
[10], we initiated the study on comparing the representation theory of gr(A) and that of A in case that A
is a Brauer graph algebra. We have characterized all the algebras gr(A) which are of finite representation 
type and described the relationship between the Auslander-Reiten quivers of gr(A) and A in this case.

A Brauer graph algebra A is a self-injective (even symmetric) special biserial algebra; the associated 
graded algebra gr(A) is usually not self-injective. Nevertheless, gr(A) is still a special biserial algebra. Thus, 
both A and gr(A) have tame representation type. To describe the tameness more precisely, one needs the 
notions of domestic and polynomial growth. The relationship between these notions are: domestic =⇒
polynomial growth =⇒ tame (cf. Section 2.1). Bocian and Skowroński have characterized when a Brauer 
graph algebra A is domestic in [2]. In the present paper, we characterize when the associated graded algebra 
gr(A) is domestic.

To state our main result precisely, let us first introduce some notations.

Definition 1.1 (See [10, Definition 2.4]). Let G be a Brauer graph. For each vertex v, we denote by m(v)
the multiplicity of v and by val(v) the valency of v, with the convention that a loop is counted twice in 
val(v). Moreover, if val(v) = 1, we denote by v′ the unique vertex adjacent to v. For each vertex v in G, we 
define the graded degree grd(v) as follows.

grd(v) =
{
m(v)val(v), if m(v)val(v) > 1,
m(v′)val(v′), if m(v)val(v) = 1.

Definition 1.2 (Compare with [10, Definition 2.12]). Let G be a Brauer graph.

(1) If u i v is an edge in G, we write the subgraph of G by removing the edge i as follows: G \ i =
Gi,u

⋃
Gi,v, where Gi,u (resp. Gi,v) is the connected branch of G \ i containing the vertex u (resp. v). 

(Note that it may happen that Gi,u = Gi,v.) Moreover, we denote the set of vertices in Gi,u (resp. Gi,v) 
by V (Gi,u) (resp. V (Gi,v)).

(2) An unbalanced edge in G is defined to be an edge associated with two vertices with different graded 
degrees. For any unbalanced edge vS i vL with grd(vS) < grd(vL) in G, we write the subgraph of G
by removing the edge i as follows: G \ i = Gi,L

⋃
Gi,S , where Gi,L (resp. Gi,S) is the connected branch 

of G \ i containing the vertex vL (resp. vS).

Definition 1.3 (See Section 3 for the details). Let G be a Brauer graph.

(1) A walk (for the notion of a walk in G, see Definition 3.1 below) v1 v2 · · · vk from v1 to 
vk in a Brauer graph G is called degree decreasing if grd(v1) ≥ grd(v2) ≥ · · · ≥ grd(vk).

(2) Suppose that G is a Brauer tree with an exceptional vertex v0 of multiplicity m0.
(2.1) κ0 is defined to be the number of unbalanced edges vS i vL in G such that the exceptional 

vertex v0 is a vertex in Gi,S .
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(2.2) For any vertices u and v in G, dG(u, v) is defined to be the number of edges in the unique walk 
from u to v.

(2.3) Given two unbalanced edges v(i)
S

i v
(i)
L and v(j)

S
j v

(j)
L in G, we call the set {i, j} an unbal

anced edge pair if j is an edge in Gi,S and dG(v(j)
S , v

(i)
S ) + 1 = dG(v(j)

L , v
(i)
S ).

v
(i)
S v

(i)
L

...i

...

...
. . .v

(j)
Sv

(j)
L

j
...
...

...

Let κ1 be the number of unbalanced edge pairs in G.

With the notations above, we have the following main result. One interesting point in this result is 
that, as in the finite representation type situation (see [10]), the graded degree function plays a key role in 
controlling the domestic type of gr(A).

Theorem 1.4 (See Theorem   3.18). Let A be the Brauer graph algebra associated with a Brauer graph G =
(V (G), E(G),m) and gr(A) the graded algebra associated with the radical filtration of A, where V (G) is the 
vertex set, E(G) is the edge set and m is the multiplicity function of G. Then gr(A) is of polynomial growth 
if and ony if gr(A) is domestic.

Furthermore, we have

(I) gr(A) is 1-domestic if and only if one of the following holds:
(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0 such that κ0(m0−1)+κ1 = 1.
(2) G is a tree and there exist two distinct vertices w0, w1, such that the following conditions hold:

(2.1) m(w0) = m(w1) = 2 and m(v) = 1 for v �= w0, w1,
(2.2) grd(w0) = grd(w1),
(2.3) Any walk from w0 (or from w1) is degree decreasing.

(3) G is a graph with a unique cycle of odd length and m(v) = 1 for all v ∈ V (G), and satisfies the 
following conditions:
(3.1) grd(u) = grd(v) for any two vertices u and v in the unique cycle,
(3.2) Any walk from any vertex in the unique cycle is degree decreasing.

(II) gr(A) is 2-domestic if and only if G satisfies the following conditions:
(1) G is a graph with a unique cycle of even length and m(v) = 1 for all v ∈ V (G),
(2) grd(u) = grd(v) for any two vertices u and v in the unique cycle,
(3) Any walk from any vertex in the unique cycle is degree decreasing.

(III) gr(A) is not n-domestic for n ≥ 3.

This paper is organized as follows. In Section 2, we recall various definitions and known facts needed in 
this paper, including representation type of finite dimensional algebras, special biserial algebras and string 
algebras, Brauer graph algebras and their associated graded algebras. In Section 3, we first introduce the 
notions of �-condition and unbalanced edge pair and prove some preliminary results; then we state our 
main result and its consequences. The proof of main result is based on careful analyses in different cases 
according to the shapes of Brauer graphs; the detailed proofs and examples of three main cases are filled in 
Section 4-6 respectively.
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2. Preliminaries

Throughout this paper, we fix an algebraically closed field k. Unless otherwise stated, all algebras will be 
finite dimensional k-algebras, and all their modules will be finite dimensional left modules. For a k-algebra 
A, we denote by rad(A) the Jacobson radical of A. For an A-module M , we denote by soc(M) and rad(M)
the socle and the radical of M , respectively. The length of a module M is denoted by �(M), it means the 
number of composition factors in any composition series of M .

2.1. Representation type of finite dimensional algebras

We recall the various notions on representation types of finite dimensional algebras and their relations 
from the textbook [13, Section XIX.3].

Let A be a finite dimensional k-algebra. We say that A is of finite representation type, if there are only 
finitely many non-isomorphic indecomposable A-modules.

Let k[t] be the polynomial algebra in one variable over k. We say that A is of tame representation type, 
if for any dimension d, there exists a finite number of A-k[t]-bimodules Qi, for 1 ≤ i ≤ nd, which are 
finitely generated and free as right k[t]-modules such that all but a finite number of isomorphism classes of 
indecomposable A-modules of dimension d are of the form Qi ⊗k[t] k[t]/(t− λ) for some λ ∈ k and some i. 
For each d, let μA(d) be the least number of such A-k[t]-bimodules. We say that A is of polynomial growth 
type if there exists a positive integer m such that μA(d) ≤ dm for all d ≥ 2; A is of finite growth type (or 
equivalently, domestic) if μA(d) ≤ m for some positive integer m and for all d ≥ 1 and A is n-domestic (or 
n-parametric) if n is the least such integer m.

Clearly every domestic algebra is of polynomial growth. In other words, if an algebra is not of polynomial 
growth, then the algebra is nondomestic. For the examples of nondomestic algebras of polynomial growth, 
we refer the reader to [14].

It is well known that an algebra of infinite representation type that is not of tame representation type is 
of wild representation type, however, our study does not involve the wild representation type.

2.2. Special biserial algebras and string algebras

These algebras are defined by quivers with relations. For more details on these algebras, we refer to [1], 
[5], and [12].

For a quiver Q, we denote by Q0 and Q1 its vertex set and arrow set respectively. We write a path p in 
a quiver from right to left and denote by s(p) and t(p) the start and the end of p, respectively. The length 
of a path is defined in an obvious way. As usual, the trivial path at a vertex i is denoted by ei.

Definition 2.1. A finite dimensional k-algebra A is called special biserial if there is a quiver Q and an 
admissible ideal I in kQ such that A is Morita equivalent to kQ/I and such that kQ/I satisfies the following 
conditions: 
(1) At every vertex v in Q there are at most two arrows starting at v and there are at most two arrows 
ending at v. 
(2) For every arrow α in Q, there exists at most one arrow β such that βα / ∈ I and there exists at most one 
arrow γ such that αγ / ∈ I.

A special biserial algebra A is called a string algebra if the defining ideal I is generated by paths.

Given a special biserial algebra A = kQ/I, we can associate a string algebra Ā as follows. Set

L := {i ∈ Q0 | Aei is an injective and not uniserial module},
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S0 :=
⊕
i∈L 

soc(Aei),

where Aei denotes the indecomposable projective A-module at vertex i. Then S0 is an ideal of A and the 
quotient algebra Ā = A/S0 is a string algebra. Note that the operation (·) preserves representation type 
(see the lemma on separation in [4]) and we can reconstruct the AR-quiver of A from the AR-quiver of A
easily (cf. [5, Section II.1.3]).

Suppose now that A = kQ/I is a string algebra. For an arrow β ∈ Q1, we denote by β−1 the formal 
inverse of β and set s(β−1) = t(β), t(β−1) = s(β), (β−1)−1 = β. For convenience, the formal inverse of an 
arrow will be called an inverse arrow. A word of length n is defined by a sequence cn . . . c2c1, where ci ∈ Q1

or c−1
i ∈ Q1, and where t(ci) = s(ci+1) for 1 ≤ i ≤ n− 1. We define

s(cn . . . c2c1) = s(c1), t(cn . . . c2c1) = t(cn),

and

(cn . . . c2c1)−1 = c−1
1 c−1

2 . . . c−1
n .

For every vertex v in Q, there is an empty word 1v of length 0 such that t(1v) = s(1v) = v and 1−1
v = 1v. 

Suppose that a word C := cn . . . c2c1 satisfies s(C) = t(C), we define a rotation of C as a word of the form 
ci . . . c1cn . . . ci+1. The product of two words is defined by placing them next to each other, provided that 
the resulting sequence is a word.

A word C is called a string provided either C = 1v for some vertex v in Q or C = cn . . . c2c1 satisfying 
ci+1 �= c−1

i for 1 ≤ i ≤ n − 1, and no subword (or its inverse) of C belongs to the ideal I. We say that a 
string C = cn . . . c2c1 with n ≥ 1 is directed if all ci are arrows, and C is inverse if all ci are inverse arrows. 
A string C of positive length is called a band if all powers of C are strings and C is not a power of a string 
of smaller length. Note that a band must contain both arrows and inverse arrows.

On the set of strings, we consider two equivalence relations. Firstly, ∼ denotes the relation which identifies 
C and C−1; and secondly, we define ∼A to be the equivalence relation which identifies each word with its 
rotations and their inverses. Let St(A) (or simply St) be a set of representatives of strings in A under ∼, 
and let Ba(A) (or simply Ba) be the set of representatives of bands under ∼A. In the following, we call a 
subword of a string a substring.

It is well known that every indecomposable module over a string algebra is either a string module or a 
band module. For each element C in St(A), there is a unique string A-module M(C) up to isomorphism. 
For each element B in Ba(A) and for any finite dimensional indecomposable k[x, x−1]-module M = (V, ϕ)
(where V is a n-dimensional k-vector space and ϕ is an invertible linear endomorphism of V ), there is a 
band module M(B,n, ϕ) corresponding to B and M . For a detailed explanation of M(C) and M(B,n, ϕ), 
we refer the reader to [1, p.160-161].

Example 2.2. Let A = kQ be the Kronecker algebra defined by the following quiver

1 2 , ��
α

β

Then A is a string algebra and we can choose St and Ba as follows.

St = {11, 12, α, β, β
−1α, αβ−1, βα−1β, αβ−1α, · · · }, Ba = {β−1α}.
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The string module M(β−1α) has the Loewy diagram 1 β 1α

2
, and the string module M(αβ−1)

has the Loewy diagram 1α β

2 2
. The band module M(β−1α, 2, ϕ) defined by the band β−1α

and the k[x, x−1]-module (k2, ϕ =
(
λ 1
0 λ

)
) corresponds to the representation

k2

ϕ−1

I2
k2,

where 0 �= λ ∈ k and I2 denotes the 2 × 2 identity matrix.

For the representation types of special biserial algebras, there is the following theorem.

Theorem 2.3 ([5, II.3.1 and II.8.1]). 

(1) Any special biserial algebra A is tame.
(2) A string algebra A is of finite representation type if and only if there is no band in A.

The representation type and Auslander-Reiten quivers for self-injective special biserial algebras are well 
studied by Erdmann and Skowroński in [6]. Before stating their results, we recall some notions. For any 
algebra A, we denote by ΓA the Auslander-Reiten quiver of A and by sΓA the stable Auslander-Reiten 
quiver of A. For the shapes of the translation quivers ZA∞

∞, ZA∞, ZA∞/ < τn >, Ãp,q, we refer to [9]. By 
Ãp,q we denote the following orientation of the quiver with underlying extended Dynkin diagram of type 
Ãp+q−1:

·
α2

· · · · · αp

·
α1

β1

·
·

β2
· · · · · βq

Theorem 2.4 ([6, Theorem 2.1]). Let A = kQ/I be a self-injective special biserial algebra. The following are 
equivalent:

(1) sΓA has a component of the form ZÃp,q.
(2) sΓA is infinite but has no component of the form ZA∞

∞.
(3) There are positive integers m, p, q such that sΓA is a disjoint union of m components of the form ZÃp,q, 

m components of the form ZA∞/ < τp >, m components of the form ZA∞/ < τ q > and infinitely many 
components of the form ZA∞/ < τ >.

(4) All but a finite number of components of ΓA are of the form ZA∞/ < τ >.
(5) The number of primitive walks in A is a positive integer.
(6) A is representation-infinite domestic.
(7) A is representation-infinite of polynomial growth.

Theorem 2.5 ([6, Theorem 2.2]). Let A = kQ/I be a self-injective special biserial algebra. The following are 
equivalent:

(1) sΓA has a component of the form ZA∞
∞.
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(2) sΓA has infinitely many (regular) components of the form ZA∞
∞.

(3) sΓA is a disjoint union of a finite number of components of the form ZA∞/ < τn > with n > 1, infinitely 
many components of the form ZA∞/ < τ > and infinitely many components of the form ZA∞

∞.
(4) A has infinitely many primitive walks.
(5) A is not of polynomial growth.

Remark 2.6. For the definition of primitive walks (= primitive V -sequences) in a special biserial algebra A, 
we refer to [15, Section 2]. In fact, the primitive walks in A precisely correspond to the bands in A.

Example 2.7. Let A = kQ/I be the self-injective special biserial algebra defined by the following quiver

aα β

and the admissible ideal I generated by α2, β2 and αβ − βα. We can choose Ba for A as follows.

Ba = {β−1α}.

Let Q′ be the following quiver:

1
ζ1

ζ2

2 .

We have a quiver homomorphism u from Q′ to Q as follows.

u(1) = u(2) = a, u(ζ1) = α, u(ζ2) = β.

By [15, Section 2], we have that u is a primitive walk in A, which corresponds to the band β−1α in A.

We would like to state a general result on domestic string algebras, which should be well-known but we 
could not find a proof in the literature. We are grateful to Nengqun Li for helpful discussion on this result.

Proposition 2.8. Let A = kQ/I be a string algebra and n a positive integer. Then A is n-domestic if and 
only if the cardinality of Ba(A) is n.

Proof. First notice that since the number of string modules of a given dimension is finite, it suffices to 
consider band modules when we consider the representation type of a representation-infinite string algebra.

It is enough to show that the cardinality of Ba(A) is n implies that A is n-domestic. We first show 
that A is ≤ n-domestic. Let Ba(A) = {b1, · · · , bn}. Then we can construct (band-like) A-k[t]-bimodules 
M1, · · · ,Mn which are finitely generated free as right k[t]-modules corresponding to the bands b1, · · · , bn, 
respectively (cf. [5, Example I.4.3]). Then each band module of A is isomorphic to some Mi⊗k[t] V for some 
finite dimensional indecomposable k[t]-module V . This shows that A is ≤ n-domestic.

Next we show that A is ≥ n-domestic. Suppose that Ba(A) = {b1, · · · , bn}. Choose a positive integer d
such that the length of bi divides d for each 1 ≤ i ≤ n. Then for each i we can construct a family of band 
modules {Wi,λ | λ ∈ k∗} of dimension d, using the band bi, so that A is ≥ n-domestic. �
2.3. Brauer graph algebras and their associated graded algebras

In this subsection, we briefly recall some notions and results on Brauer graphs, Brauer graph algebras 
and their associated graded algebras. For more details and examples, we refer to [12, Section 2] and [10, 
Section 2].
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Recall that a Brauer graph is denoted by G = (V (G), E(G),m, o), where V (G) is the vertex set, E(G) is 
the edge set, m is the multiplicity function, and o is the orientation of G (that is, for each vertex v, there 
is a multiplicity m(v) ∈ Z>0 and a cyclic ordering of the edges incident to v). We always assume that the 
associated graph G is connected and often leave out the symbol o.

A Brauer tree is a Brauer graph G = (V (G), E(G),m) such that (V (G), E(G)) is a tree and m(v) = 1
for all but at most one v ∈ V (G). In this case we always choose a specified vertex v0 (if m(v) > 1 then we 
choose v0 = v), called the exceptional vertex, whose multiplicity will be denoted by m0.

In a Brauer graph G = (V (G), E(G),m), we denote by val(v) the valency or the ordinary degree of a 
vertex v ∈ V (G); it is defined to be the number of edges in G incident to v, with the convention that a loop 
is counted twice in val(v). An edge i ∈ E(G) is said to be truncated at a vertex v if i is incident to v such 
that m(v)val(v) = 1.

The Brauer graph algebra A associated with a Brauer graph G = (V (G), E(G),m) has the form kQ/I, 
where the vertex set Q0 of Q is identified with the edge set E(G) of G, and the arrow set Q1 of Q is 
determined by the orientation of G (see [10, Subsection 2.1] for the details). Note that there are at most 
two arrows starting and ending at every vertex of Q. Every vertex v ∈ V (G) such that m(v)val(v) ≥ 2 (that 
is, v is not truncated), gives rise to a unique cycle Cv in Q, called a special cycle at v (note that val(v) is 
the number of arrows in Cv). If G contains no loops, then any special cycle in Q is a simple cycle (that is, 
a cycle with no repeated arrows and no repeated vertices). Let Cv be such a special cycle at v. Then if Cv

is a representative in its cyclic permutation class such that t(Cv) = i = s(Cv), i ∈ Q0, we say that Cv is a 
special i-cycle at v. If a special i-cycle at v has starting arrow α, then we denote this special i-cycle at v by 
Cv(α). Note that if i ∈ E(G) is not a loop, then the special i-cycle at v is unique and we simply write it by 
Cv.

The ideal I in kQ is generated by three types of relations:
Relation of the first type:

Cv(α)m(v) − Cv′(α′)m(v′)
,

for any i ∈ Q0 and for any special i-cycles Cv(α) and Cv′(α′) at v and v′ respectively such that both v and 
v′ are not truncated.

Relation of the second type:

αCv(α)m(v)
,

for any i ∈ Q0, any v ∈ V (G) and where Cv(α) is a special i-cycle at v with starting arrow α.
Relation of the third type:

βα,

for any α, β ∈ Q1 such that βα is not a subpath of any special cycle except if β = α is a loop associated 
with a vertex v of valency one and multiplicity m(v) > 1.

It is well known that Brauer graph algebras coincide with symmetric special biserial algebras. From this 
point of view, Bocian and Skowroński give a characterization of the domestic Brauer graph algebras in [2].

Theorem 2.9 (cf. [12, Corollary 2.9 and Theorem 5.1]). Let A be the Brauer graph algebra with a Brauer 
graph G = (V (G), E(G),m), where V (G) is the vertex set, E(G) is the edge set and m is the multiplicity 
function of G. Then

(a) A is of finite representation type if and only if G is a Brauer tree.
(b) A is 1-domestic if and only if one of the following holds
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(1) G is a tree with m(v) = 2 for exactly two vertices v = w0, w1 ∈ V (G) and m(v) = 1 for all 
v ∈ V (G), v �= w0, w1.

(2) G is a graph with a unique cycle of odd length and m(v) = 1 for all v ∈ V (G).
(c) A is 2-domestic if and only if G is a graph with a unique cycle of even length and m(v) = 1 for all 

v ∈ V (G).
(d) There are no n-domestic Brauer graph algebras for n ≥ 3.

Note that if G is not one of the above mentioned cases (a), (b), (c) in Theorem 2.9, then by Theorem 2.4, 
the corresponding Brauer graph algebra A is not of polynomial growth.

We now turn to the associated graded algebras of Brauer graph algebras. The notion of the graded algebra 
(denoted by gr(A)) associated to a finite dimensional algebra A with the radical filtration of A plays an 
important role in the representation theory. For the definition and elementary properties of gr(A), we refer to 
[10, Subsection 2.2]. Recall from [10, Subsection 2.3] that, for a Brauer graph algebra A = kQ/I associated 
with a Brauer graph G, the graded algebra gr(A) (associated with the radical filtration) of A has the same 
dimension with A and can be described by the same quiver and some modified relations. More precisely, 
gr(A) = kQ/I ′, where I ′ is an admissible ideal in kQ generated by relations of the second and the third types 
in I and modified relations of the first type in I. For a relation of the first type Cv(α)m(v) −Cv′(α′)m(v′) in 
I, its modified relation is defined by the term of smaller length between Cv(α)m(v) and Cv′(α′)m(v′).

From the above description, we know that gr(A) is also special biserial (but not necessarily self-injective). 
Thus we can reduce the study on the representation types of A and gr(A) to that of their associated string 
algebras A and gr(A). The string algebra A is defined by

A = A/(
⊕
i∈L 

soc(Aei)), (2.1)

where

L = {i ∈ Q0| rad(Aei)/ soc(Aei) = Vi,1 ⊕ Vi,2, Vi,1 �= 0, Vi,2 �= 0}.

For each i ∈ L, there is a relation ρi = pi − qi of the first type in I, where the length of pi is �(Vi,1) + 1, the 
length of qi is �(Vi,2) + 1. Therefore A can be described by the same quiver Q and an admissible ideal I1
in kQ, where I1 is generated by the ideal I and new relations {pi, qi | i ∈ L}. Similarly, the string algebra 
gr(A) is defined by

gr(A) = gr(A)/(
⊕
i∈L′

soc(gr(A)ei)), (2.2)

where

L′ = {i ∈ L|�(Vi,1) = �(Vi,2)}.

Note that for each i ∈ L′, there is a relation ρi = pi − qi in I ′ such that pi and qi have the same length. 
Therefore gr(A) can be described by the same quiver Q and an admissible ideal I2 in kQ, where I2 is 
generated by the ideal I ′ and new relations {pi, qi | i ∈ L′}.

As a conclusion, the four concerned algebras have the same quiver and the following displayed formulas:

A = kQ/I, A = kQ/I1, gr(A) = kQ/I ′, gr(A) = kQ/I2.

In order to describe some relationships among these algebras, we further generalize some notions from [10].
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Definition 2.10 (Compare with [10, Definition 2.12]). Let G = (V (G), E(G),m) be a Brauer graph with 
graded degree function grd and A = kQ/I the corresponding Brauer graph algebra. We identify Q0 with 
E(G) by the natural bijection between them.

(1) For an unbalanced edge u i v in G, we denote the endpoints of i by v(i)
L , v(i)

S with grd(v(i)
L ) > grd(v(i)

S ). 
Whenever the context is clear we will omit the superscript (i). Moreover, we define

ni = the number of edges in Gi,S , (2.3)

where Gi,S is the connected branch of G \ i containing the vertex vS .
(2) For an unbalanced edge vS i vL in G, there is a relation of the first type ρi = pi − qi in I, where 

pi = C
m(vS)
vS , qi = C

m(vL)
vL are paths with lengths grd(vS), grd(vL) respectively. We define the following 

sets:

W = {i ∈ Q0| rad(Aei)/ soc(Aei) = V1 ⊕ V2, V1 �= 0, V2 �= 0, �(V1) �= �(V2)} ⊆ Q0, (2.4)

P =
⋃
i∈W

{ri|ri is the longer path between pi and qi}. (2.5)

Note that the set of unbalanced edges is identified with W under the natural bijection between Q0 and 
E(G), and that s(ri) = t(ri) = i for ri ∈ P .

By the definitions of A and gr(A), we have that A is a quotient algebra of gr(A), that is, A ∼ = gr(A)/I3, 
where the ideal I3 is the k-vector space with basis given by the paths in the set P . In particular, any 
indecomposable gr(A)-module that is not gr(A)-module is an indecomposable projective-injective gr(A)
module.

For convenience, we record displayed formulas of the ideals I, I ′, I1, I2, I3 in kQ (see [10, Subsection 3.2]):

R1 := {Relation of the first type in I}, I0 := 〈Relation of the second type or the third type in I〉;
I = I0 + 〈R1〉;

I ′ = I0 + 〈pi − qi ∈ R1 | i ∈ Q0, i / ∈ W 〉 + 〈qi | i ∈ W , pi − qi ∈ R1, qi is shorter than pi〉;
I1 = I0 + 〈pi, qi | i ∈ Q0, pi − qi ∈ R1〉;

I2 = I0 + 〈pi, qi | i ∈ Q0, i / ∈ W , pi − qi ∈ R1〉 + 〈qi | i ∈ W , pi − qi ∈ R1, qi is shorter than pi〉;
I3 = 〈ri ∈ P | i ∈ W , pi − qi ∈ R1〉 = k-vector space with basis {ri ∈ P | i ∈ W }.

The following proposition describes when gr(A) and A are isomorphic.

Proposition 2.11 ([10, Proposition 2.13]). Let A = kQ/I be a Brauer graph algebra associated with a Brauer 
graph G and gr(A) the associated graded algebra of A. Then the following statements are equivalent.

(1) A is isomorphic to gr(A) as algebras.
(2) The vertices in the Brauer graph G have the same graded degree.
(3) W (resp. P) is an empty set.

3. �-Condition, unbalanced edge pair and main result

Throughout this section, we assume that A = kQ/I is a Brauer graph algebra associated with a Brauer 
graph G = (V (G), E(G),m) and that gr(A) = kQ/I ′ is its associated graded algebra. Moreover, let A =
kQ/I1 and gr(A) = kQ/I2 be the associated string algebras in (2.1) and (2.2), respectively. Note that 
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by definition, A and A (resp. gr(A) and gr(A)) have the same representation type. Note also that by 
Proposition 2.8, for n ≥ 1, gr(A) is n-domestic if and only if the cardinality of Ba(gr(A)) is n. In this 
section, we will define useful notions and state our main results on the infinite representation type of gr(A).

3.1. �-Condition in a Brauer graph

Definition 3.1 (Compare with [10, Definition 3.7]). Let u, v be two distinct vertices in a Brauer graph G.

(1) A walk from u to v is a sequence [v1, a1, v2, . . . , vk−1, ak−1, vk] of vertices and edges, where v1 = u, 
vk = v, ai is an edge incident to the vertices vi and vi+1 for each 1 ≤ i ≤ k − 1, and all vertices (and 
hence all edges) are pairwise distinct. We often simply write this walk by [a1, . . . , ak−1] and call it walk 
from edge a1 to edge ak−1. In particular, when G is a tree, the walk from u to v is unique.

(2) The length of a walk from u to v is defined to be the number of edges in this walk and will be denoted 
by dG(u, v) whenever the context is clear.

(3) We say that a walk [v1, a1, v2, . . . , vk−1, ak−1, vk] is degree decreasing if grd(v1) ≥ grd(v2) ≥ · · · ≥
grd(vk).

Remark 3.2. The definition of a walk in Brauer graph is different from the definition of a walk in graph 
theory, actually, any walk in Brauer graph is identified with a path in graph theory.

Remark 3.3. According to [10], gr(A) is of finite representation type if and only if G is a Brauer tree with 
an exceptional vertex v0 of multiplicity m0 such that any walk starting from a specified vertex vh is degree 
decreasing, where vh is defined to be v0 when m0 > 1 or one of the vertices with maximal graded degree 
when m0 = 1.

In order to generalize our description from finite representation type to infinite representation type, we 
introduce the following condition on any Brauer graph.

Definition 3.4. Let G be a Brauer graph and vS i vL an unbalanced edge in G. We say that G satisfies 
�-condition with respect to vS i vL if the following three conditions hold:

(1) Gi,S �= Gi,L, that is, the two subgraphs are not the same subgraph.
(2) Gi,S is a tree with m(v) = 1 for all v ∈ V (Gi,S).
(3) The unique walk from vS to any vertex v in Gi,S is degree decreasing.

Remark 3.5. 

(1) Gi,L = Gi,S for an unbalanced edge vS i vL in a Brauer graph G if and only if i is an edge in some 
cycle of G if and only if there is another walk from vL to vS different from [i].

(2) By [10, Theorem 4.5], we can formulate the finite representation type using �-condition as follows: gr(A)
is of finite representation type if and only if G is a Brauer tree which satisfies �-condition with respect 
to any unbalanced edge in G.

Definition 3.6 (Compare with [10, Definition 3.9]). Let cn . . . c1 be a string in gr(A). We say that cn . . . c1 is 
a simple string in gr(A) from s(c1) to t(cn) if all s(ck) are pairwise distinct and t(cn) is different from s(ck)
for each 1 ≤ k ≤ n.

Remark 3.7. Similarly as in the proof of [10, Lemma 3.8], for any walk of length ≥ 2 in G we can get exactly 
two simple strings in gr(A) corresponding to this walk.
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We now generalize some results for Brauer tree algebras in [10] to Brauer graph algebras.

Lemma 3.8 (Compare with [10, Lemma 3.10]). Let gr(A) = kQ/I2 and C = cn . . . c2c1 a string in gr(A), 
where s(C) = t(C) = i. We denote by u i v the corresponding edge in G. If c1 or c−1

1 lies in a special 
cycle at v and Gi,v �= Gi,u, then C has a substring C ′ = cs . . . c2c1 satisfying s(C ′) = t(C ′) = i such that 
the edges corresponding to vertices s(ck) (2 ≤ k ≤ s) lie in Gi,v. Moreover, if Gi,v is a tree, then C ′ has a 
substring C1 such that s(C1) = t(C1) and that C1 or C1

−1 is a directed string.

Proof. The first result is an obvious consequence of Gi,v �= Gi,u. The proof of the second result is identical 
to [10, Lemma 3.10]. �
Lemma 3.9 (Compare with [10, Lemma 4.3]). Let G be a Brauer graph and gr(A) = kQ/I2. Suppose that 
C = cn . . . cl . . . c1 is a string in gr(A) satisfying l < n and that cl . . . c1 or c−1

1 . . . c−1
l is an element of P , 

where s(c1) = t(cn) = i. We denote by vS i vL the corresponding unbalanced edge in G. If Gi,S �= Gi,L

and Gi,S is a tree, then at least one of the following holds.

(1) There is a vertex v with m(v) ≥ 2 in Gi,S.
(2) There are some adjacent vertices v, w in Gi,S, such that dG(v, vS)+1 = dG(w, vS) and grd(v) < grd(w).

In other words, G does not satisfy �-condition with respect to vS i vL.

Proof. Noting that [10, Lemma 3.4], [10, Lemma 4.1] and Lemma 3.8, we have an identical proof to [10, 
Lemma 4.3]. �

The first statement in the following result generalizes [10, Lemma 3.5], and the second one generalizes 
[10, Lemma 5.1] and [10, Proposition 5.4], both are stated in the Brauer tree case in [10].

Lemma 3.10. 

(1) Let E be a set consisting of some unbalanced edges in G, and for each i ∈ E, let ri be the element in 
P corresponding to the unbalanced edge i, where P is defined in (2.5). If C is a string in gr(A) and C
is not a string in gr(A)/(

∑
i∈E kri), then, there exists i ∈ E such that C or C−1 has a substring ri. In 

particular, if C is a string in gr(A) and C is not a string in A, then C or C−1 has a substring lying in 
the set P .

(2) Suppose that C = cn . . . cl . . . c1 is a string in gr(A) satisfying l < n and that cl . . . c1 or c−1
1 . . . c−1

l is an 
element of P , where s(c1) = t(cl) = i and P is defined in (2.5). Denote by vS i vL the corresponding 
unbalanced edge in G. If G satisfies �-condition with respect to vS i vL, then
(2.1) cn . . . cl+1 is a simple substring of C such that t(ck) is in Gi,S for each l + 1 ≤ k ≤ n and in 

particular the string C is not a band in gr(A);
(2.2) the number of strings C in St(gr(A)) which contain a substring ri or r−1

i is equal to (ni + 1)2, 
where ni is the number of edges in Gi,S.

(3) Let E be a set consisting of some unbalanced edges in G, and for each i ∈ E, let ri be the element in P
corresponding to the unbalanced edge i. If G satisfies �-condition with respect to any unbalanced edge in 
E, then gr(A) and gr(A)/(

∑
i∈E kri) have the same representation type. In particular, if E is the set 

of all unbalanced edges in G and G satisfies �-condition with respect to any unbalanced edge, then, by 
the relationship A ∼ = gr(A)/(

∑
i∈E kri), gr(A) and A have the same representation type.

Proof. (1) Since the k-vector space 
∑

i∈E kri is an ideal of gr(A), the conclusion is clear.
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(2.1) To show that the edge corresponding to t(ck) is in Gi,S for l + 1 ≤ k ≤ n, it suffices to prove that 
t(ck) �= i for l + 1 ≤ k ≤ n. Suppose on the contrary that there exists l + 1 ≤ m ≤ n such that t(cm) = i

and t(ck) �= i for l + 1 ≤ k ≤ m − 1. Since G satisfies �-condition with respect to vS i vL, we have 
that Gi,S �= Gi,L and Gi,S is a tree. For the substring cm . . . cl . . . c1, where s(c1) = t(cm) = i, the string 
cm . . . cl . . . c1 satisfies the conditions of Lemma 3.9, which then leads to a contradiction.

Next we show that cn . . . cl+1 is a simple string. It suffices to show that all t(ck) are pairwise distinct for 
l ≤ k ≤ n. Suppose that there exist k and t satisfying l ≤ t < k ≤ n such that t(ck) = t(ct) = s(ct+1) and 
that t(cm) is different from t(cs) for each l ≤ m < k and l ≤ s < m. Repeating the similar proof as above, 
we still get a contradiction.

(2.2) Since G satisfies �-condition with respect to vS i vL, this proof is identical to the proof of [10, 
Proposition 5.4].

(3) Since G satisfies �-condition with respect to any unbalanced edge in E, (2.1) shows that the band 
modules over the two algebras gr(A) and gr(A)/(

∑
i∈E kri) are the same, and (2.2) shows that the number 

of string gr(A)-modules is equal to the number of string gr(A)/(
∑

i∈E kri)-modules plus 
∑

i∈E(ni + 1)2, it 
follows that gr(A) and gr(A)/(

∑
i∈E kri) have the same representation type. �

Proposition 3.11. Let G be a Brauer graph which is a tree with m(v) = 2 for exactly two vertices v = w0, w1

in V (G) and m(v) = 1 for all v �= w0, w1. Then the following two conditions are equivalent:

(1) G satisfies �-condition with respect to any unbalanced edge vS i vL;
(2) w0 and w1 are in Gi,L for any unbalanced edge vS i vL in G.

Moreover, if G satisfies �-condition with respect to any unbalanced edge, then gr(A) is domestic. In partic
ular, gr(A) is 1-domestic.

Proof. Assume that w0 and w1 are in Gi,L for any unbalanced edge vS i vL in G. Since G is a tree with 
m(v) = 2 for exactly v = w0, w1 and w0 and w1 are in Gi,L for vS i vL, Gi,S �= Gi,L and Gi,S is a tree 
with m ≡ 1. Then the conditions (1) and (2) of �-condition hold. We next show that the condition (3) of 
�-condition holds.

We suppose, on the contrary that, there exists a vertex w in Gi,S for some unbalanced edge vS i vL
such that the walk [v1, a1, v2, . . ., vk−1, ak−1, vk] from vS to w is not degree decreasing, where v1 = vS and 
vk = w. In other words, there exists an unbalanced edge vj

aj vj+1 with grd(vj) < grd(vj+1) for some 
1 ≤ j ≤ k− 1. Since dG(vj , vL) + 1 = dG(vj+1, vL) and w0 and w1 are in Gi,L, Gi,L ⊆ Gaj ,S and w0 and w1

are in Gaj ,S . It contradicts the condition that w0 and w1 are in Gaj ,L.
Conversely, assume that G satisfies �-condition with respect to any unbalanced edge vS i vL. Suppose 

that there is some unbalanced edge vS i vL such that w0 or w1 is in Gi,S . It clearly contradicts the 
condition (2) of �-condition.

Now assume that G satisfies �-condition with respect to any unbalanced edge. Then, by Lemma 3.10, 
gr(A) and A have the same representation type. It follows from Theorem 2.9 that gr(A) is 1-domestic. Hence 
gr(A) is 1-domestic. �
Proposition 3.12. Let G be a Brauer graph with a unique cycle and m(v) = 1 for all v ∈ V (G). Then the 
following two conditions are equivalent:

(1) G satisfies �-condition with respect to any unbalanced edge vS i vL;
(2) all edges in the unique cycle are not unbalanced edges and the unique cycle is in Gi,L for any unbalanced 

edge vS i vL in G.
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Moreover, if G satisfies �-condition with respect to any unbalanced edge, then gr(A) is domestic. In partic
ular, if the unique cycle is of odd length (resp. even length), then gr(A) is 1-domestic (resp. 2-domestic).

Proof. Assume that all edges in the unique cycle are not unbalanced edges and the unique cycle is in Gi,L

for any unbalanced edge vS i vL in G. Since m(v) = 1 for all v ∈ V (G), m(v) = 1 for all v ∈ V (Gi,S)
for vS i vL. Since all edges in the unique cycle are not unbalanced edges and the unique cycle is in Gi,L

for vS i vL, Gi,S �= Gi,L and Gi,S is a tree. Then the conditions (1) and (2) of �-condition hold. The 
condition (3) of �-condition holds by using a similar approach to the proof of Proposition 3.11.

Conversely, assume that G satisfies �-condition with respect to any unbalanced edge vS i vL. If there 
is some edge in the unique cycle is an unbalanced edge, then it contradicts the condition (1) of �-condition. 
If there is some unbalanced edge vS i vL such that the unique cycle is in Gi,S, then it contradicts the 
condition (2) of �-condition.

Now assume that G satisfies �-condition with respect to any unbalanced edge. Then, by Lemma 3.10, 
gr(A) and A have the same representation type. It follows from Theorem 2.9 that if the unique cycle in G
is of odd length (resp. even length), then gr(A) is 1-domestic (resp. 2-domestic). �

The next result deals with a case where the cardinality of Ba(gr(A)) is infinite.

Lemma 3.13. Suppose that there are two distinct bands b1 = cm . . . cl+1cl . . . c1 and b2 = c′m′ . . . c′l+1cl . . . c1 in 
gr(A), where s(c1) = t(cl), cl . . . c1 is a directed substring, cl+1 = c′l+1 is an inverse arrow, and s(ci) �= s(c1)
(resp. s(c′i) �= s(c1)) for l + 1 < i ≤ m (resp. l + 1 < i ≤ m′). Then the cardinality of Ba(gr(A)) is infinite 
and gr(A) is not of polynomial growth.

Proof. From the assumption of the two bands b1 and b2, we have that all powers of b2b1 are strings in 
gr(A). Moreover, since b1 and b2 are distinct and s(ci) �= s(c1) (resp. s(c′i) �= s(c1)) for l + 1 < i ≤ m (resp. 
l + 1 < i ≤ m′), b2b1 is not a power of a string of smaller length. Then b2b1 is also a band. Similarly, for 
any positive integer k, bk2b1 is a band. Then the cardinality of Ba(gr(A)) is infinite.

In order to prove that gr(A) is not of polynomial growth, we just need to prove that gr(A) is not of 
polynomial growth. The band b1 (resp. b2) has length m (resp. m′). When m = m′, there are pairwise 
distinct elements (indexed by (k1, k2, · · · , kn))

(∗) bkn−1
2 bkn

1 b
kn−1+1
2 b

kn−1
1 b

kn−2
2 b

kn−2
1 . . . bk1

2 bk1
1

in Ba(gr(A)), where n and kn are positive integers greater than 1, and ki’s (1 ⩽ i ⩽ n − 1) are positive 
integers such that 

∑n
i=1 ki = tm for some positive integer t. Note that the above band (∗) has length 

2tm2. Fix t >> 0 and consider the indecomposable band modules corresponding to the bands (∗) and with 
dimension d (where d = 2tm2), we have that the number of this kind of indecomposable band modules is ∑tm−1

n=2
(
tm−2
n−1 

)
= 2tm−2 − 1. Therefore μgr(A)(d) ≥ 2tm−2 − 1 and there is no positive integer s such that 

μgr(A)(d) ≤ ds for all d ≥ 2. Hence gr(A) is not of polynomial growth.
When m �= m′, without loss of generality, we can assume m′ < m. Similarly, there are pairwise distinct 

elements (indexed by (k1, k2, · · · , kn))

(∗∗) b
kn+t(m−m′)
2 bkn

1 b
kn−1
2 b

kn−1
1 . . . bk1

2 bk1
1

in Ba(gr(A)), where n and ki’s (1 ⩽ i ⩽ n − 1) are positive integers such that 
∑n

i=1 ki = tm′. Note 
that the above band (∗∗) has length 2tmm′. Fix t >> 0 and consider the indecomposable band modules 
corresponding to the bands (∗∗) and with dimension d (where d = 2tmm′), we have that the number of this 
kind of indecomposable band modules is 

∑tm′

n=1
(
tm′−1
n−1 

)
= 2tm′−1. Therefore μgr(A)(d) ≥ 2tm′−1 and there is 

no positive integer s such that μgr(A)(d) ≤ ds for all d ≥ 2. Hence gr(A) is not of polynomial growth. �
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3.2. Unbalanced edge pair in a Brauer tree

In order to describe the domestic gr(A) when G is a Brauer tree, we introduce the notion of unbalanced 
edge pair.

Definition 3.14. Let G be a Brauer tree with an exceptional vertex v0 of multiplicity m0.

(1) We call the set {i, j} an unbalanced edge pair if j is an edge in Gi,S and dG(v(j)
S , v

(i)
S )+1 = dG(v(j)

L , v
(i)
S ), 

where v(i)
S

i v
(i)
L and v(j)

S
j v

(j)
L are two unbalanced edges in G.

(2) We define κ0 to be the number of unbalanced edges vS i vL in G such that the exceptional vertex 
v0 is a vertex in Gi,S .

(3) We define κ1 to be the number of unbalanced edge pairs in G.

Remark 3.15. 

(1) κ1 = 0 if and only if the unique walk from vS to any vertex in Gi,S is degree decreasing for any 
unbalanced edge vS i vL in G.

(2) By [10, Theorem 4.5], gr(A) is of finite representation type if and only if G is a Brauer tree such that 
κ0(m0 − 1) + κ1 = 0.

We have the following observations about κ0 and κ1.

Lemma 3.16. If κ1 �= 0, then there are two unbalanced edges v(i)
S

i v
(i)
L and v(j)

S
j v

(j)
L in G such that 

the exceptional vertex v0 is a vertex in Gi,S and {i, j} is an unbalanced edge pair. In particular, if κ1 �= 0, 
then κ0 �= 0.

Proof. Since κ1 �= 0, there are two unbalanced edges v(i)
S

i v
(i)
L and v(j)

S
j v

(j)
L in G such that 

{i, j} is an unbalanced edge pair. Without loss of generality, we assume that v0 is a vertex in Gi,L. Since 
G \ i = Gi,S

⋃
Gi,L and {i, j} is an unbalanced edge pair, Gi,L ⊆ Gj,S and v0 is a vertex in Gj,S. We get 

our desired result. �
Lemma 3.17. Let G be a Brauer tree with an exceptional vertex v0 of multiplicity m0. Then κ1 ≥ 2 if and 
only if there are three unbalanced edges v(i)

S
i v

(i)
L , v(j)

S
j v

(j)
L and v(k)

S
k v

(k)
L in G such that {i, j}

and {i, k} are unbalanced edge pairs.

Proof. ``⇐='' It is obvious to get κ1 ≥ 2 if {i, j} and {i, k} are unbalanced edge pairs.
``=⇒'' Since κ1 ≥ 2, there are at least two unbalanced edge pairs. Without loss of generality, we assume 

that {i, j} and {k, l} are two unbalanced edge pairs, where the unbalanced edges v(i)
S

i v
(i)
L , v(j)

S
j v

(j)
L , 

v
(k)
S

k v
(k)
L and v(l)

S
l v

(l)
L are pairwise distinct and k is an edge in Gi,S . There are two cases to be 

considered.
Case 1. If dG(v(k)

S , v
(i)
S ) + 1 = dG(v(k)

L , v
(i)
S ), then {i, k} is an unbalanced edge pair. Moreover, {i, j} is 

also an unbalanced edge pair. We have that {i, j} and {i, k} are two unbalanced edge pairs.
Case 2. If dG(v(k)

S , v
(i)
S ) − 1 = dG(v(k)

L , v
(i)
S ), since the unbalanced edge l is an edge in Gk,S with 

dG(v(l)
S , v

(k)
S ) + 1 = dG(v(l)

L , v
(k)
S ) and Gk,S ⊆ Gi,S , then l is an edge in Gi,S with dG(v(l)

S , v
(i)
S ) + 1 =

dG(v(l)
L , v

(i)
S ) and therefore {i, l} is an unbalanced edge pair. Moreover, {i, j} is also an unbalanced edge 

pair. We have that {i, j} and {i, l} are two unbalanced edge pairs. �
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3.3. Main result and consequences

We now state our main result, which characterizes when gr(A) is domestic.

Theorem 3.18. Let A be the Brauer graph algebra associated with a Brauer graph G = (V (G), E(G),m) and 
gr(A) the graded algebra associated with the radical filtration of A, where V (G) is the vertex set, E(G) is 
the edge set and m is the multiplicity function of G. Let κ0 and κ1 be defined as in Definition 3.14. Then 
the following three statements are equivalent.

(a) gr(A) is of polynomial growth.
(b) gr(A) is domestic.
(c) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

Furthermore, for domestic type, we have the following.

(b1) gr(A) is 1-domestic if and only if one of the following holds.
(1) G is a Brauer tree with an exceptional vertex v0 of multiplicity m0 such that κ0(m0 − 1) + κ1 = 1.
(2) G is a tree and there exist two distinct vertices w0, w1, such that the following conditions hold:

(2.1) m(w0) = m(w1) = 2 and m(v) = 1 for v �= w0, w1.
(2.2) grd(w0) = grd(w1).
(2.3) Any walk from w0 (or from w1) is degree decreasing.

(3) G is a graph with a unique cycle of odd length and m(v) = 1 for all v ∈ V (G), and satisfies the 
following conditions hold:
(3.1) grd(u) = grd(v) for any two vertices u and v in the unique cycle.
(3.2) Any walk from any vertex in the unique cycle is degree decreasing.

(b2) gr(A) is 2-domestic if and only if G satisfies the following conditions.
(1) G is a graph with a unique cycle of even length and m(v) = 1 for all v ∈ V (G).
(2) grd(u) = grd(v) for any two vertices u and v in the unique cycle.
(3) Any walk from any vertex in the unique cycle is degree decreasing.

(b3) gr(A) is not n-domestic for n ≥ 3.

Proof. Since A and A (resp. gr(A) and gr(A)) have the same representation type, and since A is a quotient 
of the algebra gr(A), if the Brauer graph algebra A is nondomestic (resp. A is not of polynomial growth), 
then gr(A) is nondomestic (resp. gr(A) is not of polynomial growth). By Theorem 2.9, in order to describe 
when gr(A) is domestic or is of polynomial growth, it suffices to study gr(A) in the cases (a), (b), (c) in The
orem 2.9. The descriptions in these cases are given in Proposition 4.10, Proposition 5.4 and Proposition 6.6, 
respectively. �

The main result gives the following consequence.

Corollary 3.19. Let A be a Brauer tree algebra and gr(A) the associated graded algebra of A. If one of the 
following is satisfied:

(1) κ1 > 1,
(2) κ1 = 1 and m0 > 1,

then gr(A) is not of polynomial growth.
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Comparing with the results in [10], we would also like to give the following remarks on the relationships 
between the Auslander-Reiten quivers of gr(A) and A.

Remark 3.20. 

(1) Similar as the discussion in [10, Section 5], for domestic gr(A) except the Brauer tree case, based on 
Lemma 3.10, Proposition 3.11, Proposition 3.12, we can prove that, the Auslander-Reiten quiver of A
is obtained from the Auslander-Reiten quiver of gr(A) by removing several diamonds.

(2) When G is a Brauer tree and gr(A) is domestic, the situation is more complicated. In this case we have 
the following conjecture on the Auslander-Reiten quiver Γ of gr(A):
(2.1) Γ consists of components of the form ZÃp,q and components of the form ZA∞/〈τn〉 (both com

ponents are up to deleting some diamonds). Moreover, when m0 = 1, Γ has a component ZÃp,q

satisfying p + q = ni + nj + 2 with {i, j} the unique unbalanced edge pair in G; when m0 = 2, Γ
has a component ZÃni+1,|E(G)| with i the unique unbalanced edge in G such that the exceptional 
vertex v0 is in Gi,S .

(3) We note that in the picture of [10, Remark 5.14], the obtained part W in the Auslander-Reiten quiver 
of gr(A) may be different from the beginning wing W , since the obtained part may contain new inserted 
diamonds.

4. The case that G is a Brauer tree

In this section, we describe when gr(A) = kQ/I ′ is domestic in the case when G = (V (G), E(G),m) is 
a Brauer tree with an exceptional vertex v0 of multiplicity m0, where V (G) is the vertex set, E(G) is the 
edge set and m is the multiplicity function of G. Let κ0 and κ1 be defined in Definition 3.14.

Recall that since the number of string modules of a given dimension is finite, it suffices to consider band 
modules when we consider the representation type of a representation-infinite string algebra. The following 
lemma is useful when we consider two related representation-infinite string algebras.

Lemma 4.1. Let Λ = kQ/I and Γ = Λ/J be two representation-infinite string algebras, where J is an ideal 
of Λ with radm(Λ) ⊆ J ⊆ rad2(Λ) for some m ≥ 2. Suppose that for any indecomposable Λ-module M
satisfying JM �= 0, M is a string Λ-module. Then Γ is of polynomial growth (resp. domestic) if and only if 
Λ is of polynomial growth (resp. domestic).

Proof. Since the algebra Γ is a quotient of the algebra Λ, we have that any band Γ-module can be considered 
as a band Λ-module. Moreover, from the assumption that M is a string Λ-module for any indecomposable 
Λ-module M satisfying JM �= 0, it follows that any band Λ-module is also a band Γ-module. Hence there is 
a one to one correspondence between band Λ-modules and band Γ-modules. Combining the remark before 
this lemma, we get the desired result. �
Remark 4.2. We have used a special case of the above lemma in Lemma 3.10 (3), where Λ = gr(A) and 
Γ = A.

The strategy when we prove that the string algebra gr(A) is not of polynomial growth. Before giving the 
following result we would like to state two main methods used in this paper when we want to show gr(A)
is not of polynomial growth. The first method is to construct two bands b1 and b2 in gr(A) and then use 
Lemma 3.13 or use similar method as in Lemma 3.13. The second method is to construct a representation
infinite quotient algebra C of gr(A) such that C is also a quotient algebra of some Brauer graph algebra B
which is representation-infinite and not of polynomial growth:
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gr(A) ↠ C ↞ B,

and then use Lemma 4.1. In some situations (for example, in next proposition), both methods work well.

Proposition 4.3. Let gr(A) = kQ/I2 be defined in (2.2) and G the associated Brauer tree with an exceptional 
vertex v0 of multiplicity m0. If m0 ≥ 3 and κ0 �= 0, then gr(A) and gr(A) are not of polynomial growth.

Proof. It is enough to show that gr(A) is not of polynomial growth. We will prove this using the second 
method mentioned above. The proof is divided into three steps.

Step 1. We prove that there is a quotient algebra C (which is a representation-infinite string algebra) of 
gr(A).

Since κ0 �= 0, by definition there is an unbalanced edge vS i vL such that the exceptional vertex v0 is 
in Gi,S . Let i1 < i2 < · · · < in < i1 be the cyclic ordering at vL, where i1 = i and n = grd(vL) = val(vL). 
Note that n > 2. Let E1 = {i1, i2, . . . , in} and E2 = E(Gi,S) ∪ E1, where the edge ik is incident to vL
and v′k for any 2 ≤ k ≤ n, and E(Gi,S) is the edge set of Gi,S . We denote by E3 the set of all unbalanced 
edges in Gi,S and by rj the element in P corresponding to the unbalanced edge j in E3. We have algebra 
epimorphisms as follows.

gr(A) ↠ gr(A) ↠ gr(A)/(gr(A)egr(A) ⊕
∑
j∈E3

krj),

where e =
∑

i∈E(G)\E2
ei and ei is the primitive idempotent in Q corresponding to the edge i in E(G) \E2.

Let C be the above algebra gr(A)/(gr(A)egr(A) ⊕
∑

j∈E3
krj). Then C = kQ′/IC , where IC is an 

admissible ideal in kQ′ and Q′ is a subquiver of Q by removing all vertices corresponding to the edges in 
E(G) \ E2 and all related arrows. Note that C is a string algebra and is representation-infinite.

Step 2. We prove that C is a quotient algebra of some Brauer graph algebra B which is representation
infinite and not of polynomial growth.

We next construct a related Brauer graph G′. Let G′ = (V (Gi,S) ∪ {vL, v′2, v′3, . . . , v′n}, E2,m), where 
V (Gi,S) is the vertex set of Gi,S , m(v0) = m0, m(vL) = 2 and m(v) = 1 for the other vertices v. Note 
that the vertex vS is not truncated in G′ since the edge i is still unbalanced in G′. We may visualise the 
underlying graph of G′ from G as follows:

vL�
��

�
�

...
�

��
i2

v′2
�� ��. . .

���i3 v′3

in
v′n

...
�

�

�
�...

�
�

ivS�
�

�

�
�

�

...
. . .

. . .
G′

Let B be the Brauer graph algebra associated with the new Brauer graph G′ and B = kQ′/IB,1 the 
corresponding string algebra defined in (2.1). By the construction of the Brauer graph G′ and Theorem 2.9, 
we have that B is representation-infinite and not of polynomial growth. Therefore, B is not of polynomial 
growth.

Now let E4 = {ik|grd(vL) ≤ grd(v′k), 1 < val(v′k), 2 ≤ k ≤ n} (which is also defined in the original Brauer 
graph G), where the edge ik is incident to vL and v′k in G for any 2 ≤ k ≤ n. We can get the following 
algebra isomorphism from their constructions

C ∼ = B/(
⊕

ik∈E1\E4

radn+1(Pik) ⊕
⊕

ik∈E4

radn(Pik)),
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where Pik is the projective cover of the simple B-module Sik corresponding to the edge ik in G′ for each 
1 ≤ k ≤ n and where J :=

⊕
ik∈E1\E4

radn+1(Pik)⊕
⊕

ik∈E4
radn(Pik) is an ideal of B. Clearly J ⊆ rad2(B).

Step 3. We prove that C is not of polynomial growth and therefore gr(A) is not of polynomial growth.
Note that there are two arrows starting and ending at vertex i of Q′ and there is one arrow starting and 

ending at vertex ik of Q′ for all 2 ≤ k ≤ n. So Q′ contains the following subquiver:

·
αm1

i2

α′
2

. . . i

α′
1

α1

. . .

·

α2

in

α′
n

,

where m1 denotes the valency of vS. Moreover, J can be generated by α′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k (ik ∈ E4) 

and α′
k . . . α

′
1α

′
n . . . α′

k+1α
′
k (ik ∈ E1 \ E4). For any band in B, we have the following claim.

Claim: For any band b in B, b does not have the substring α′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k for any ik in E4, and 

b does not have the substring α′
k . . . α

′
1α

′
n . . . α

′
k+1α

′
k for any ik in E1 \E4 (possibly after rotation or taking 

inverse of b). That is, any band in B gives in fact a band in the quotient algebra C.
If the above claim is true, then, the ideal J satisfies the condition in Lemma 4.1, and therefore C is not 

of polynomial growth. It follows that gr(A) is not of polynomial growth. This is our desired result.
Proof of Claim. Suppose on the contrary that b has the substring α′

k−1 . . . α
′
1α

′
n . . . α

′
k+1α

′
k for some ik �= i1

and b = cs . . . c1α
′
k−1 . . . α

′
1α

′
n . . . α

′
k+1α

′
k. Since s(b) = t(b) and there is only one arrow starting and ending at 

vertex ik for 2 ≤ k ≤ n, s(α′
k) = t(cs) = ik and cs = α′

k−1. We rotate b to cs−1 . . . c1α
′
k−1 . . . α

′
1α

′
n . . . α′

kα
′
k−1. 

If ik−1 �= i1, then we can repeat the above step and therefore we can assume that b has the substring 
α′

1α
′
n . . . α

′
2α

′
1. We may assume that b = cs . . . c1α

′
1α

′
n . . . α

′
2α

′
1. Since s(α′

1) = t(cs) and there is only one 
arrow starting and ending at vertex ik for 2 ≤ k ≤ n, we have that b has the substring α′

n . . . α
′
2α

′
1α

′
n . . . α

′
2α

′
1. 

It contradicts the fact that α′
n . . . α

′
2α

′
1α

′
n . . . α

′
2α

′
1 is in the ideal IB,1 (indeed it is an element of soc(B)). 

This finishes the proof of our claim. �
We give an example to illustrate the above result.

Example 4.4. Let G be the following Brauer tree with m0 = 3.

·

v0
1 ·

4

3

2

·

·

Let A = kQ/I be the Brauer tree algebra associated with G and gr(A) the associated graded algebra of 
A. The quiver Q is as follows.

1β1

α1

2

α2

4

α4

3.
α3
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The regular representation of gr(A) is as follows.

1
2
3
4

1

1
1

⊕

2
3
4
1
2

⊕

3
4
1
2
3

⊕

4
1
2
3
4

Note that E1 = E2 = E(G) = {1, 2, 3, 4}, E3 = ∅ and gr(A) = gr(A) = C, b1 = (β1)−1α4α3α2α1 and 
b2 = (β1)−1(β1)−1α4α3α2α1 are bands in gr(A). By a method similar to Lemma 3.13, we can show that 
there are infinitely many bands in gr(A). We have that G′ is the following Brauer graph

v5

v1
1

v2

4

2

3
v3

v4

where m(v1) = 3, m(v2) = 2 and m(v3) = m(v4) = m(v5) = 1. The regular representation of the corre
sponding Brauer graph algebra B is as follows.

1
2
3
41

1

1
2
3
4

1

⊕

2
3
4
1
2
3
4
1
2

⊕

3
4
1
2
3
4
1
2
3

⊕

4
1
2
3
4
1
2
3
4

Note that B = B/ soc(P1), E4 = ∅ and C ∼ = B/ rad5(P1 ⊕P2 ⊕P3 ⊕P4), where Pi is the projective cover 
of the simple B-module Si corresponding to the edge i in G′. Since B is not of polynomial growth and B is 
not of polynomial growth, C is not of polynomial growth and therefore gr(A) is not of polynomial growth.

Lemma 4.5. Let gr(A) = kQ/I2 be defined in (2.2). If one of the following is satisfied:

(1) m0 = 1 and κ1 = 1,
(2) m0 = 2, κ0 = 1 and κ1 = 0,

then gr(A) is 1-domestic and therefore the cardinality of Ba(gr(A)) is 1.

Proof. By Proposition 2.8, we can give a proof by counting the number of bands in Ba(gr(A)). However, 
we would like give a more conceptual proof using a similar method as in the proof of Proposition 4.3.

If m0 = 1 and κ1 = 1, then there are only two unbalanced edges v(i)
S

i v
(i)
L and v(j)

S
j v

(j)
L

in G such that j is in Gi,S and dG(v(j)
S , v

(i)
S ) + 1 = dG(v(j)

L , v
(i)
S ). Let i1 < i2 < · · · < it < i1 (resp. 

j1 < j2 < · · · < jt1 < j1) be the cyclic ordering at v(i)
L (resp. v(j)

L ), where i1 = i (resp. j1 = j) and t = val(v(i)
L )

(resp. t1 = val(v(j)
L )). Note that t > 2 and t1 > 2. Let E1 = {i1, i2, . . . , it} and E2 = {j1, j2, . . . , jt1}, where 

the edge ik is incident to v(i)
L and v′k for any 2 ≤ k ≤ t, and the edge jk is incident to v(j)

L and w′
k for any 
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2 ≤ k ≤ t1. We denote by E3 the set of all unbalanced edges different from i and j in G, and by rl the 
element in P corresponding to an unbalanced edge l in E3. There are algebra epimorphisms as follows.

gr(A) ↠ gr(A) ↠ gr(A)/(
∑
l∈E3

krl).

Since m0 = 1 and κ1 = 1, we have that grd(u) ≥ grd(v) for any edge u v different from i and j in G
satisfying dG(u, v(i)

S ) + 1 = dG(v, v(i)
S ), and the unique walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from v(i)

S to v(j)
S

satisfies grd(v1) = grd(v2) = . . . = grd(vk), where v1 = v
(i)
S , vk = v

(j)
S , and ai is an edge incident to the 

vertices vi and vi+1 for each 1 ≤ i ≤ k − 1. Then G satisfies �-condition with respect to any unbalanced 
edge in E3. Therefore, by Lemma 3.10, gr(A) and gr(A)/(

∑
l∈E3

krl) have the same representation type. In 
particular, since κ0(m0 − 1) + κ1 = 1 �= 0, they are of infinite representation type.

Let G′ = (V (G), E(G),m) be a Brauer graph, where m(v(i)
L ) = m(v(j)

L ) = 2 and m(v) = 1 for the 
other vertices v. Let B be the Brauer graph algebra associated with the new Brauer graph G′ and B the 
corresponding string algebra defined in (2.1). Note that the quiver of B is also Q. By the construction of 
the Brauer graph G′ and Theorem 2.9, we have that B and B are 1-domestic.

Let E4 = {ik|grd(v(i)
L ) ≥ grd(v′k), 1 < val(v′k), 2 ≤ k ≤ t} and E5 = {jk|grd(v(j)

L ) ≥ grd(w′
k), 1 <

val(w′
k), 2 ≤ k ≤ t1} (which are also defined in the original Brauer graph G), where the edge ik (resp. jk) 

is incident to v(i)
L (resp. v(j)

L ) and v′k (resp. w′
k) in G for any 2 ≤ k ≤ t (resp. 2 ≤ k ≤ t1). We can get the 

following algebra isomorphism from their constructions

gr(A)/(
∑
l∈E3

krl) ∼ = B/(
⊕

k∈E1\E4

radt+1(Pk) ⊕
⊕
k∈E4

radt(Pk) ⊕
⊕

k∈E2\E5

radt1+1(Pk) ⊕
⊕
k∈E5

radt1(Pk)),

where Pk is the projective cover of the simple B-module Sk corresponding to the edge k in G′.
Since B is 1-domestic and gr(A)/(

∑
l∈E3

krl) is of infinite representation type, we have that gr(A)/ 

(
∑

l∈E3
krl) is 1-domestic and therefore gr(A) is 1-domestic. Hence, the cardinality of Ba(gr(A)) is 1.

If m0 = 2, κ0 = 1 and κ1 = 0, then there is only one unbalanced edge vS i vL in G such that 
v0 is in Gi,S . Similarly as above, let i1 < i2 < · · · < it < i1 be the cyclic ordering at vL, where i1 = i

and t = grd(vL) = val(vL). Let E1 = {i1, i2, . . . , it}, where the edge ik is incident to vL and v′k for any 
2 ≤ k ≤ t. We denote by E2 the set of all unbalanced edges different from i in G, and by rl the element in 
P corresponding to an unbalanced edge l in E2.

Let G′ = (V (G), E(G),m) be a Brauer graph, where m(vL) = m(v0) = 2 and m(v) = 1 for the other ver
tices v. Let B be the Brauer graph algebra associated with the new Brauer graph G′ and B the corresponding 
string algebra defined in (2.1). Note that B and B are 1-domestic.

Let E3 = {ik|grd(vL) ≥ grd(v′k), 1 < val(v′k), 2 ≤ k ≤ t} (which is also defined in the original Brauer 
graph G), where the edge ik is incident to vL and v′k in G for any 2 ≤ k ≤ t. We can get the following 
algebra isomorphism

gr(A)/(
∑
l∈E2

krl) ∼ = B/(
⊕

k∈E1\E3

radt+1(Pk) ⊕
⊕
k∈E3

radt(Pk)),

where Pk is the projective cover of the simple B-module Sk corresponding to the edge k in G′. We also have 
that gr(A) is 1-domestic and the cardinality of Ba(gr(A)) is 1. �

We give an example to illustrate the above result.
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Example 4.6. Let G be the following Brauer tree with m0 = 2.

· 4 ·

v0
1 ·

3

2
·

Note that κ0 = 1 and κ1 = 0.
Let A = kQ/I be the Brauer tree algebra associated with G and gr(A) the associated graded algebra of 

A. The quiver Q is as follows.

1
β0

α0 2
β1

3β2

γ0

4
γ1

The regular representation of gr(A) is as follows.

1
2
3
1

1 ⊕
2
3
1
2

⊕
3

1
2
3

4 ⊕
4
3
4

Note that gr(A) = gr(A). Moreover, b := α−1
0 β2β1β0 is the unique band in gr(A) (after rotation or taking 

inverse). We have that G′ is the following Brauer graph

v4
4

v5

v1
1

v2

3

2
v3

where m(v1) = 2, m(v2) = 2 and m(v3) = m(v4) = m(v5) = 1. The regular representation of the corre
sponding Brauer graph algebra B is as follows.

1
2
3
1

1

2
3

1

⊕

2
3
1
2
3
1
2

⊕

3
1
2
3
1
2

3

4
⊕

4

3

4

Note that B = B/(soc(P1) ⊕ soc(P3)) and gr(A)/kr3 ∼ = B/(rad4(P1) ⊕ rad4(P2) ⊕ rad3(P3)), where Pi

is the projective cover of the simple B-module Si corresponding to the edge i in G′. Since B is 1-domestic, 
B is 1-domestic, and gr(A)/kr3 is of infinite representation type, we have that gr(A)/kr3 is 1-domestic and 
therefore gr(A) is 1-domestic.
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Lemma 4.7. Let gr(A) = kQ/I2 be defined in (2.2). If one of the following is satisfied:

(1) m0 = 2 and κ0 ≥ 2,
(2) m0 = 2 and κ1 �= 0,

then the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Proof. Case 1: m0 = 2 and κ0 ≥ 2. In this case there are two unbalanced edges v(i)
S

i v
(i)
L and v(j)

S
j v

(j)
L

in G such that the exceptional vertex v0 is a vertex in Gi,S and it is also a vertex in Gj,S . There is a walk 
[v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] (resp. [v′1, a′1, v′2, a′2, v′3, . . . , v′k′−1, a

′
k′−1, v

′
k′ ]) from v0 to v(i)

L (resp. v(j)
L ), 

where v1 = v0, vk = v
(i)
L , ak−1 = i (resp. v′1 = v0, v′k′ = v

(j)
L , a′k′−1 = j) and al (resp. a′l) is an edge incident 

to the vertices vl (resp. v′l) and vl+1 (resp. v′l+1) for each 1 ≤ l ≤ k − 1 (resp. 1 ≤ l ≤ k′ − 1). We consider 
two subcases (a) and (b).

(a) If a1 = a′1, then Q contains the following two subquivers

·
α′

t

·
α2

. . . i

α1

α′
1

. . .

·

α′
2

·
αs

. . . . . .

·
γs2

·
γ′
2

. . . a1

γ′
1

γ1

. . .

·

γ2

·

γ′
t2

,

·
β′
t1

·
β2

. . . j

β1

β′
1

. . .

·

β′
2

·

βs1

. . . . . .

·
γs2

·
γ′
2

. . . a1

γ′
1

γ1

. . .

·

γ2

·

γ′
t2

,

where s = val(v(i)
S ), t = val(v(i)

L ), s1 = val(v(j)
S ), t1 = val(v(j)

L ), s2 = val(v2), t2 = val(v0), α′
t . . . α

′
1, β′

t1 . . . β
′
1

and γ′
t2 . . . γ

′
1 are not in I2.

We will show that the two walks mentioned at the beginning of Case 1 correspond to two different bands 
b1 and b2 in gr(A) that satisfy the condition of Lemma 3.13.

The band b1 is defined as follows. There is a simple string ck1 . . . c2c1 satisfying c1 = γ−1
s2 and t(ck1) = i. 

There are two situations for ck1 .

(1) If ck1 is an inverse arrow (in other words, ck1 = α−1
1 ), then α′

t . . . α
′
2α

′
1ck1 . . . c2c1γ

′
t2 · · · γ′

1 is also a 
string. There exists a simple string c′k2

. . . c′2c
′
1 satisfying c′1 = α−1

s and t(c′k2
) = a1. Then

b1 := c′k2
. . . c′2c

′
1α

′
t . . . α

′
2α

′
1ck1 . . . c2c1γ

′
t2 · · · γ

′
1

is a band with source a1.
(2) If ck1 is an arrow (in other words, ck1 = αs), then (α′

1)−1 . . . (α′
t)−1ck1 . . . c2c1γ

′
t2 . . . γ

′
1 is also a string. 

In this situation we can similarly get a band b1 as in (1).

The band b2 is defined as follows. There is a simple string dk′
1
. . . d2d1 satisfying d1 = γ−1

s2 and t(dk′
1
) = j. 

Similarly, we have two situations for dk′
1
. Then b2 := d′k′

2
. . . d′2d1β

′
t1 . . . β

′
1dk′

1
. . . d2d1γ

′
t2 · · · γ′

1 (or b2 :=
d′k′

2
. . . d′2d

′
1(β′

1)
−1

. . . (β′
t1)

−1
dk′

1
. . . d2d1γ

′
t2 · · · γ′

1) is a band with source a1.
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(b) If a1 �= a′1, then dG(v(j)
S , v

(i)
S ) + 1 = dG(v(j)

L , v
(i)
S ) and j is in Gi,S . Therefore {i, j} is an unbalanced 

edge pair. We have that Q contains the following subquivers

·
β′
t1

·
β2

. . . j

β1

β′
1

. . .

·

β′
2

·

βs1

. . . . . .

·
αs

·
α′

2

. . . i

α′
1

α1

. . .

·

α2

·

α′
t

,

·
γ′
t2

·
γ2

. . . a1

γ1

γ′
1

. . .

·

γ′
2

·

γs2

. . . . . .

·
αs

·
α′

2

. . . i

α′
1

α1

. . .

·

α2

·

α′
t

,

where s = val(v(i)
S ), t = val(v(i)

L ), s1 = val(v(j)
S ), t1 = val(v(j)

L ), t2 = val(v0), s2 = val(v2), α′
t . . . α

′
1, β′

t1 . . . β
′
1

and γ′
t2 . . . γ

′
1 are not in I2.

We will also show that in this case there are two different bands b1 and b2 in gr(A) that satisfy the 
condition of Lemma 3.13.

The band b1 is defined as follows. There is a simple string ck1 . . . c2c1 satisfying c1 = α−1
s and t(ck1) = j. 

There are two situations for ck1 .

(1) If ck1 is an inverse arrow (in other words, ck1 = β−1
1 ), then β′

t1 . . . β
′
1ck1 . . . c2c1α

′
t · · ·α′

1 is also a string. 
There exists a simple string c′k2

. . . c′2c
′
1 satisfying c′1 = β−1

s1 and t(c′k2
) = i. Then

b1 := c′k2
. . . c′2c

′
1β

′
t1 . . . β

′
1ck1 . . . c2c1α

′
t · · ·α′

1

is a band with source i.
(2) If ck1 is an arrow (in other words, ck1 = βs1), then (β′

1)
−1

. . . (β′
t1)

−1
ck1 . . . c2c1α

′
t · · ·α′

1 is also a string. 
In this situation we can similarly get a band b1 as in (1).

The band b2 is defined as follows. There is a simple string dk′
1
. . . d2d1 satisfying d1 = α−1

s and t(dk′
1
) = a1. 

Similarly, we have two situations for dk′
1
. Then b2 := d′k′

2
. . . d′2d

′
1γ

′
t2 . . . γ

′
2γ

′
1dk′

1
. . . d2d1α

′
t · · ·α′

1 (or b2 :=
d′k′

2
. . . d′2d

′
1(γ′

1)−1 . . . (γ′
t2)

−1dk′
1
. . . d2d1α

′
t · · ·α′

1) is a band with source i.
In either case of (a) and (b), we have that two distinct bands b1 and b2 in gr(A) and b1 and b2 satisfy 

the condition of Lemma 3.13 by construction. Therefore, the cardinality of Ba(gr(A)) is infinite and gr(A)
is not of polynomial growth.

Case 2. If m0 = 2 and κ1 �= 0, by Lemma 3.16, then there are two unbalanced edges v(i)
S

i v
(i)
L and 

v
(j)
S

j v
(j)
L in G such that v0 is in Gi,S and {i, j} is an unbalanced edge pair. It is similar to the above 

case (b). We still get our desired result. �

We give an example to illustrate the above result.
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Example 4.8. Let G be the following Brauer tree with m0 = 2.

·
2

·

· 1 · 6

7

5

·

·

3

4
v0 ·

Let A = kQ/I be the Brauer graph algebra associated with G and gr(A) the associated graded algebra 
of A. The quiver Q is as follows.

2

β1

1
β0 α0

5

α1

4δ0

γ1

3
γ0

β2

7

α3

6
α2

We have that b1 = γ−1
1 β1β0β2γ

−1
0 δ0 and b2 = γ−1

1 β1β0α
−1
0 α−1

1 α−1
2 α−1

3 β2γ
−1
0 δ0 are bands in gr(A).

Lemma 4.9. Let gr(A) = kQ/I2 be defined in (2.2). If κ1 ≥ 2, then the cardinality of Ba(gr(A)) is infinite 
and gr(A) is not of polynomial growth.

Proof. Since κ1 ≥ 2, by Lemma 3.17, there are three unbalanced edges v(i)
S

i v
(i)
L , v(j)

S
j v

(j)
L and 

v
(k)
S

k v
(k)
L in G such that {i, j} and {i, k} are unbalanced edge pairs. Then Q contains the following two 

subquivers

·
β′
t1

·
β2

. . . j

β1

β′
1

. . .

·

β′
2

·

βs1

. . . . . .

·
γs2

·
γ′
2

. . . i

γ′
1

γ1

. . .

·

γ2

·

γ′
t2

,

·
α′

t

·
α2

. . . k

α1

α′
1

. . .

·

α′
2

·
αs

. . . . . .

·
γs2

·
γ′
2

. . . i

γ′
1

γ1

. . .

·

γ2

·

γ′
t2

,

where s = val(v(k)
S ), t = val(v(k)

L ), s1 = val(v(j)
S ), t1 = val(v(j)

L ), s2 = val(v(i)
S ), t2 = val(v(i)

L ), α′
t . . . α

′
1, 

β′
t1 . . . β

′
1 and γ′

t2 . . . γ
′
1 are not in I2.

We will show that there are two different bands b1 and b2 in gr(A) that satisfy the condition of 
Lemma 3.13.

The band b1 is defined as follows. There is a simple string ck1 . . . c2c1 satisfying c1 = γ−1
s2 and t(ck1) = j. 

There are two situations for ck1 .

(1) If ck1 is an inverse arrow (in other words, ck1 = β−1
1 ), then β′

t1 . . . β
′
1ck1 . . . c2c1γ

′
t2 · · · γ′

1 is also a string. 
There exists a simple string c′k2

. . . c′2c
′
1 satisfying c′1 = β−1

s1 and t(c′k2
) = i. Then
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b1 := c′k2
. . . c′2c

′
1β

′
t1 . . . β

′
1ck1 . . . c2c1γ

′
t2 · · · γ

′
1

is a band with source i.
(2) If ck1 is an arrow (in other words, ck1 = βs1), then (β′

1)
−1

. . . (β′
t1)

−1
ck1 . . . c2c1γ

′
t2 . . . γ

′
1 is also a string. 

In this situation we can similarly get a band b1 as in (1).

The band b2 is defined as follows. There is a simple string dk′
1
. . . d2d1 satisfying d1 = γ−1

s2 and t(dk′
1
) = k. 

Similarly, we have two situations for dk′
1
. Then b2 := d′k′

2
. . . d′2d

′
1α

′
t . . . α

′
2α

′
1dk′

1
. . . d2d1γ

′
t2 · · · γ′

1 (or b2 :=
d′k′

2
. . . d′2d

′
1(α′

1)−1 . . . (α′
t)−1dk′

1
. . . d2d1γ

′
t2 · · · γ′

1) is a band with source i.
Moreover, b1 and b2 satisfy the condition of Lemma 3.13 by construction. Therefore, the cardinality of 

Ba(gr(A)) is infinite and gr(A) is not of polynomial growth. �
By the above results, we have the following characterization of domestic representation type of gr(A).

Proposition 4.10. Let A be the Brauer tree algebra associated with a Brauer tree with an exceptional vertex 
v0 of multiplicity m0 and gr(A) the graded algebra associated with the radical filtration of A. Then the 
following are equivalent.

(1) gr(A) is of polynomial growth.
(2) gr(A) is domestic.
(3) gr(A) is 1-domestic.
(4) κ0(m0 − 1) + κ1 = 1.
(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

5. The case that G is a tree with m(v) = 2 for exactly two vertices and m(v) = 1 for other vertices

In this section, we describe when gr(A) = kQ/I ′ is domestic under the assumption that G =
(V (G), E(G),m) is a tree with m(v) = 2 for exactly two vertices v = w0, w1 ∈ V (G) and m(v) = 1
for all v ∈ V (G), v �= w0, w1, where V (G) is the vertex set, E(G) is the edge set and m is the multiplicity 
function of G.

Lemma 5.1. Let gr(A) = kQ/I2 be defined in (2.2). Suppose that there is an unbalanced edge vS i vL
in G such that w0 and w1 are in different connected branch of G \ i. Then the cardinality of Ba(gr(A)) is 
infinite and gr(A) is not of polynomial growth.

Proof. Without loss of generality, we assume that w0 is in Gi,S and w1 is in Gi,L. We consider the walk 
[v1, a1, v2, . . . , vk−1, ak−1, vk] from w0 to w1, where v1 = w0, vk = w1. There is an edge vj

aj vj+1 in the 
walk such that aj = i, vj = vS and vj+1 = vL. Then Q contains the following subquiver

·
β′
t1

·
β2

. . . ak−1

β1

β′
1

. . .

·

β′
2

·

βs1

. . . . . .

·
α′

t

·
α2

. . . i

α1

α′
1

. . .

·

α′
2

·
αs

. . . . . .

·
γs2

·
γ′
2

. . . a1

γ′
1

γ1

. . .

·

γ2

·

γ′
t2

,

where s = val(vS), t = val(vL), s1 = val(vk−1), t1 = val(w1), s2 = val(v2), t2 = val(w0), α′
t . . . α

′
1, β′

t1 . . . β
′
1

and γ′
t2 . . . γ

′
1 are not in I2.

We will show that there are two different bands b1 and b2 in gr(A) that satisfy the condition of 
Lemma 3.13.
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The band b1 is defined as follows. There is a simple string ck1 . . . c2c1 satisfying c1 = γ−1
s2 and t(ck1) =

ak−1. There are two situations for ck1 .

(1) If ck1 is an inverse arrow (in other words, ck1 = β−1
1 ), then β′

t1 . . . β
′
1ck1 . . . c2c1γ

′
t2 · · · γ′

1 is also a string. 
There exists a simple string c′k2

. . . c′2c
′
1 satisfying c′1 = β−1

s1 and t(c′k2
) = a1. Then

b1 := c′k2
. . . c′2c

′
1β

′
t1 . . . β

′
1ck1 . . . c2c1γ

′
t2 · · · γ

′
1

is a band with source a1.
(2) If ck1 is an arrow (in other words, ck1 = βs1), then (β′

1)
−1

. . . (β′
t1)

−1
ck1 . . . c2c1γ

′
t2 . . . γ

′
1 is also a string. 

In this situation we can similarly get a band b1 as in (1).

The band b2 is defined as follows. There is a simple string dk′
1
. . . d2d1 satisfying d1 = γ−1

s2 and t(dk′
1
) = i. 

Similarly, we have two situations for dk′
1
. Then b2 := d′k′

2
. . . d′2d

′
1α

′
t . . . α

′
2α

′
1dk′

1
. . . d2d1γ

′
t2 · · · γ′

1 (or b2 :=
d′k′

2
. . . d′2d

′
1(α′

1)−1 . . . (α′
t)−1dk′

1
. . . d2d1γ

′
t2 · · · γ′

1) is a band with source a1.
Moreover, b1 and b2 satisfy the condition of Lemma 3.13 by construction. Therefore, the cardinality of 

Ba(gr(A)) is infinite and gr(A) is not of polynomial growth. �
Proposition 5.2. Let gr(A) = kQ/I2 be defined in (2.2). If there is an unbalanced edge vS i vL in G such 
that w0 and w1 are in Gi,S, then gr(A) and gr(A) are not of polynomial growth.

Proof. This can be proved by constructing infinitely many bands in Ba(gr(A)) using the similar method in 
Lemma 5.1. Alternatively, we can use an approach similar to the proof of Proposition 4.3 to get a quotient 
algebra C of gr(A) which is a representation-infinite string algebra and is not of polynomial growth. Therefore 
we have that gr(A) and gr(A) are not of polynomial growth. �

By Proposition 3.11, Lemma 5.1 and Proposition 5.2, we have the following characterization of domestic 
representation type of gr(A).

Proposition 5.3. Let A be the Brauer graph algebra associated with a Brauer graph G which is a tree with 
m(v) = 2 for exactly two vertices v = w0, w1 and m(v) = 1 for all v �= w0, w1, and gr(A) the graded algebra 
associated with the radical filtration of A. Then the following are equivalent.

(1) gr(A) is of polynomial growth.
(2) gr(A) is domestic.
(3) gr(A) is 1-domestic.
(4) There is no unbalanced edge in G or w0 and w1 are in Gi,L for any unbalanced edge vS i vL in G

(In other words, G satisfies �-condition with respect to any unbalanced edge in G).
(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

We can describe when gr(A) is domestic from the graded degrees of vertices in G point of view in the 
following

Proposition 5.4. Let A be the Brauer graph algebra associated with a Brauer graph G which is a tree with 
m(v) = 2 for exactly two vertices v = w0, w1 and m(v) = 1 for all v �= w0, w1, and gr(A) the associated 
graded algebra of A. Then gr(A) is domestic if and only if it satisfies the following conditions.

(1) grd(w0) = grd(w1).
(2) Any walk from w0 (or from w1) is degree decreasing.
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Proof. ``=⇒'' Suppose on the contrary that grd(w0) �= grd(w1). Consider the walk [v1, a1, v2, . . . , vk−1, ak−1, 
vk] from w0 to w1, where v1 = w0, vk = w1, we have that there is an unbalanced edge vi ai vi+1 with 
grd(vi) �= grd(vi+1) for some 1 ≤ i ≤ k − 1 in the walk. Without loss of generality, we assume that 
grd(vi) < grd(vi+1). Then w0 is in Gai,S and w1 is in Gai,L, by Proposition 5.3, gr(A) is nondomestic which 
is a contradiction. Therefore grd(w0) = grd(w1) and the condition (1) holds.

In order to verify the condition (2). Suppose on the contrary that there is a vertex w′ in G such that 
the walk [v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] from w0 to w′ is not degree decreasing, where v1 = w0 and 
vk = w′. In other words, there exists an unbalanced edge vi ai vi+1 with grd(vi) < grd(vi+1) for some 
1 ≤ i ≤ k−1 in the walk. We have that w0 is in Gai,S . Moreover, since gr(A) is domestic, by Proposition 5.3, 
w0 is in Gai,L. A contradiction.

``⇐='' We suppose on the contrary that gr(A) is nondomestic. By Proposition 2.11 and Proposition 5.3, 
we have that there is some unbalanced edge vS i vL such that w0, w1 are in Gi,S or w0, w1 are in different 
connected branch of G \ i.

Case 1. If w0, w1 are in Gi,S . Consider the walk [v1, a1, v2, . . . , vk−1, ak−1, vk] from w0 to vL, where 
v1 = w0 and vk = vL. Then i = ak−1. Since the above walk is degree decreasing, we have grd(vS) ≥ grd(vL), 
which is clearly a contradiction.

Case 2. If w0, w1 are in different connected branch of G\i. Consider the walk [v1, a1, v2, . . . , vk−1, ak−1, vk]
from w0 to w1, where v1 = w0 and vk = w1. Then i is an edge in the walk. Since the above walk is degree 
decreasing, we have grd(w0) �= grd(w1). It contradicts the condition (1). �
6. The case that G is a graph with a unique cycle and m ≡ 1

In this section, we describe when gr(A) = kQ/I ′ is domestic in the case that G is a graph with a unique 
cycle and m(v) = 1 for any vertex v in G.

Lemma 6.1. The number of unbalanced edges in the unique cycle is always strictly greater than 1 if it 
is non-zero. Precisely, if there is an unbalanced edge v(i)

S
i v

(i)
L in the unique cycle, then there is 

another unbalanced edge v(j)
S

j v
(j)
L with v(i)

S �= v
(j)
L in the unique cycle such that there is a walk 

[v1, a1, v2, . . . , vk−1, ak−1, vk] from v(i)
S to v(j)

L satisfying i �= a1 and ak−1 = j, where v1 = v
(i)
S , vk = v

(j)
L and 

al is an edge in the unique cycle incident to the vertices vl and vl+1 for each 1 ≤ l ≤ k − 1.

Proof. Note that the unique cycle is connected, if there exists an unbalanced edge in the unique cycle, then 
the number of unbalanced edges in the unique cycle is strictly greater than 1.

For any unbalanced edge v(i)
S

i v
(i)
L in the unique cycle, there is also an unbalanced edge v(j)

S
j

v
(j)
L different from i in the unique cycle. We can assume that v(i)

S �= v
(j)
L ; indeed, if v(i)

S = v
(j)
L , then 

grd(v(j)
S ) < grd(v(j)

L ) = grd(v(i)
S ) < grd(v(i)

L ), and by the connectivity of cycle, there is another unbalanced 

edge v(j′)
S

j′ v
(j′)
L (which is different from i and j) in the unique cycle with v(i)

S �= v
(j′)
L .

The above shows that for any unbalanced edge v(i)
S

i v
(i)
L in the unique cycle, we have an

other unbalanced edge v(j)
S

j v
(j)
L satisfying v(i)

S �= v
(j)
L in the unique cycle. There is a walk 

[v1, a1, v2, . . . , vk−1, ak−1, vk] from v(i)
S to v(j)

L satisfying i �= a1, where v1 = v
(i)
S , vk = v

(j)
L and al is an 

edge in the unique cycle incident to the vertices vl and vl+1 for each 1 ≤ l ≤ k − 1. Moreover, there is 
also a walk [v′1, a′1, v′2, . . . , v′k′−1, a

′
k′−1, v

′
k′ ] from v(i)

S to v(j)
L different from the above walk, where v′1 = v

(i)
S , 

v′k′ = v
(j)
L , a′1 = i and a′l is an edge in the unique cycle incident to the vertices v′l and v′l+1 for each 

1 ≤ l ≤ k′ − 1. We have the following two cases for ak−1.

(a) If ak−1 = j, then j and the walk [v1, a1, v2, . . . , vk−1, ak−1, vk] give our desired result.
(b) If ak−1 �= j, then a′k′−1 = j and there are two cases to be considered.
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(1) If grd(v(j)
S ) < grd(v(i)

L ), by the connectivity of cycle, then there is an unbalanced edge a′t in the 
walk [a′1, a′2, . . . , a′k′−1] satisfying grd(v′t) > grd(v′t+1) and v′t �= v

(i)
S . The unbalanced edge a′t and 

the walk [v1, a1, v2, . . . , vk, j, v
(j)
S , . . . , v′t+1, a

′
t, v

′
t] give our desired result.

(2) If grd(v(j)
S ) ≥ grd(v(i)

L ), then grd(v(i)
S ) < grd(v(j)

L ) and there is an unbalanced edge at in the walk 
[a1, a2, . . . , ak−1] satisfying grd(vt) < grd(vt+1). Therefore the unbalanced edge at and the walk 
[v1, a1, v2, . . . , vt, at, vt+1] give our desired result. �

Lemma 6.2. Let gr(A) = kQ/I2 be defined in (2.2). If some edges in the unique cycle are unbalanced edges, 
then the cardinality of Ba(gr(A)) is infinite and gr(A) is not of polynomial growth.

Proof. If some edges in the unique cycle are unbalanced edges, by Lemma 6.1, then there are at least two 
unbalanced edges v(i)

S
i v

(i)
L and v(j)

S
j v

(j)
L with v(i)

S �= v
(j)
L in the unique cycle such that there is a 

walk [v1, a1, v2, a2, v3, . . . , vk−1, ak−1, vk] from v(i)
S to v(j)

L satisfying i �= a1 and ak−1 = j, where v1 = v
(i)
S , 

vk = v
(j)
L and al is an edge in the unique cycle incident to the vertices vl and vl+1 for each 1 ≤ l ≤ k − 1. 

Then Q contains the following subquiver

·
β′
t1

·
β2

. . . j

β1

β′
1

. . .

·

β′
2

·

βs1

. . . . . .

·
αs

·
α′

2

. . . i

α′
1

α1

. . .

·

α2

·

α′
t

,

where s = val(v(i)
S ), t = val(v(i)

L ), s1 = val(v(j)
S ), t1 = val(v(j)

L ), α′
t . . . α

′
1 and β′

t1 . . . β
′
1 are not in I2.

Since there is a unique cycle in G, there is a band b1 = α′
t . . . α

−1
s in A. Therefore b1 is also a band in 

gr(A).
Next we construct another band b2 in gr(A). There is a simple string ck1 . . . c2c1 satisfying c1 = α−1

s and 
t(ck1) = j and it is constructed from the walk [a1, a2, . . . , ak−1]. There are two situations.

(1) If ck1 is an inverse arrow (in other words, ck1 = β−1
1 ), then β′

t1 . . . β
′
1ck1 . . . c2c1α

′
t · · ·α′

1 is also a string. 
There exists a simple string c′k2

. . . c′2c
′
1 satisfying c′1 = β−1

s1 and t(c′k2
) = i. Then

b2 := α′
t . . . α

′
1c

′
k2

. . . c′2c
′
1β

′
t1 . . . β

′
1ck1 . . . c2c1

is a band with source i.
(2) If ck1 is an arrow (in other words, ck1 = βs1), then (β′

1)
−1

. . . (β′
t1)

−1
ck1 . . . c2c1 α′

t . . . α
′
1 is also a string. 

In this situation we can similarly get a band b2 as in (1).

Using an approach similar to the proof of Lemma 3.13, we have that the cardinality of Ba(gr(A)) is 
infinite and gr(A) is not of polynomial growth. �

We give an example to illustrate the above result.

Example 6.3. Let G be the following Brauer graph with m ≡ 1.

·

3

2 · 1

4

·

·
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Let A = kQ/I be the Brauer graph algebra associated with G and gr(A) the associated graded algebra 
of A. The quiver Q is as follows.

3
β1γ0

2
β0

α1

1
α0

4
α2

γ1

Note that gr(A) = gr(A)/ soc(P3), where P3 is the projective cover of simple gr(A)-module S3 corresponding 
to the vertex 3 in Q.

We have that b1 = α0α2γ
−1
0 β0α

−1
1 γ1β

−1
1 and b2 = α0α2α1β

−1
0 γ0α

−1
2 α−1

0 α−1
1 γ1β

−1
1 are bands in gr(A).

Proposition 6.4. Let gr(A) = kQ/I2 be defined in (2.2). Suppose that there is an unbalanced edge vS i vL
which is not an edge in the unique cycle such that the unique cycle is in Gi,S. Then gr(A) and gr(A) are 
not of polynomial growth.

Proof. This can be proved by constructing infinitely many bands in Ba(gr(A)) using the similar method in 
Lemma 6.2. Alternatively, we can use an approach similar to the proof of Proposition 4.3 to get a quotient 
algebra C of gr(A) which is a representation-infinite string algebra and is not of polynomial growth. Therefore 
we have that gr(A) and gr(A) are not of polynomial growth. �

By Proposition 3.12, Lemma 6.2 and Proposition 6.4, we have the following characterization of domestic 
representation type of gr(A).

Proposition 6.5. Let A be the Brauer graph algebra associated with a Brauer graph G and gr(A) the graded 
algebra associated with the radical filtration of A, where G is a graph with a unique cycle and m(v) = 1 for 
all v ∈ V (G). Then the following are equivalent.

(1) gr(A) is of polynomial growth.
(2) gr(A) is domestic.
(3) gr(A) is 1-domestic (resp. 2-domestic) if the unique cycle is of odd length (resp. even length).
(4) There is no unbalanced edges in G or all edges in the unique cycle are not unbalanced edges and the 

unique cycle is in Gi,L for any unbalanced edge vS i vL (In other words, G satisfies �-condition with 
respect to any unbalanced edge in G).

(5) The cardinality of Ba(gr(A)) is finite, where gr(A) is defined in (2.2).

We can describe when gr(A) is domestic from the graded degrees of vertices in G point of view in the 
following

Proposition 6.6. Let A be the Brauer graph algebra associated with a Brauer graph G and gr(A) the associated 
graded algebra of A, where G is a graph with a unique cycle and m ≡ 1. Then gr(A) is domestic if and only 
if it satisfies the following conditions.

(1) grd(u) = grd(v) for any two distinct vertices u and v in the unique cycle.
(2) Any walk from any vertex in the unique cycle is degree decreasing.

Proof. ``=⇒'' Since all edges in the unique cycle are not unbalanced edges, grd(u) = grd(v) for any two 
vertices u and v in the unique cycle (hence the condition (1) holds).
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In order to verify the condition (2). We suppose, on the contrary that, there is a vertex w in G such that 
a walk [v1, a1, v2, . . ., vk−1, ak−1, vk] from v to w is not degree decreasing, where v is a vertex in the unique 
cycle and vk = w. In other words, there is an unbalanced edge vi ai vi+1 with grd(vi) < grd(vi+1) for 
some 1 ≤ i ≤ k − 1 in the walk. We have v is in Gai,S and the unique cycle is in Gai,S . Moreover, since 
gr(A) is domestic, by Proposition 6.5, the unique cycle is in Gai,L. A contradiction.

``⇐='' We suppose on the contrary that gr(A) is nondomestic. By Proposition 2.11 and Proposition 6.5, 
since it contradicts the condition (1) that some edges in the unique cycle are unbalanced edges, we have 
that all edges in the unique cycle are not unbalanced edges and therefore there is some unbalanced edge 
vS

i vL such that the unique cycle is in Gi,S . For a vertex v in the unique cycle and any walk [v1, a1, v2, . . ., 
vk−1, ak−1, vk] from v to vL which is degree decreasing, we have that i is an edge in the walk and there
fore grd(vS) ≥ grd(vL), which is clearly a contradiction. Our assumption is false and therefore gr(A) is 
domestic. �
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